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Who Needs Pixels? A Cognitive Approach to Machine Vision

In the following paper I will discuss an architecture for abstract object recognition. At the 

system's core is the difference of Gaussian (DoG) function.  The DoG function is used to build 

“receptive fields” of varying sizes in the image. These receptive fields are further processed to both 

segment the image into 7 +/- 2 regions of space and to locate keypoints in the image. A DoG-based 

approach has its roots in the neurophysiological basis of the brain; each receptive field can be thought 

of as a single neuron in primary visual cortex. In fact, neurons with response patterns similar to various 

levels of the DoG function have been located in real brains (citation).  

The image segmentation algorithm can be thought to be a primitive analogue of the human 

dorsal system, while the keypoint recognition algorithm is a candidate to provide the first layer of input 

to the ventral system. Separating the two systems increases the efficiency of each and allows for more 

natural abstraction. Furthermore, interaction between the two systems will allow for a simple correlate 

of focus.  Segments within the image that contain many keypoints will be considered highly relevant.  

Additional keypoints located in a relevant section of the image will have a lower threshold of 

activation.  Thus our system will have the ability to regulate its function from the top-down in a 

neurally inspired manner.

Building neurologically plausible receptive fields

Both our image segmentation and object recognition algorithms rely on the ability to 

differentiate areas of space. To build this functionality from the ground up, we must first construct a 

measure of the difference in color at any given point in the image. To do this, we will run a guassian 

over the image, with various sigma parameters. This will produce different levels of smoothing on the 

image. We obtain the difference of guassian function by subtracting two guassians with different 



sigmas.  This produces a high magnitude “cell” when there is high contrast between the center of the 

field and its surroundings. We can then use the absolute value, so that our cells respond to any point in 

the image with rapid color shift, no matter whether it goes from light to dark or vice versa. The radius 

of our receptive field is dependent on the sigma values used in each of the two gaussian functions.

Now that we've constructed small, highly overlapping receptive fields across the image we can 

focus on building an abstract representation from these fields. The first step is to use the concept of 

lateral inhibition to greatly reduce the number of cells we listen to. We'll approximate biological  

inhibition by doing a simple hill-climb across all the receptive field cells with the same radius  

(sensitivity), discarding all but the maximally responding cells.  This will reduce our image from 

having a cell centered at every pixel to one with much less overlap. To use Lesperance's naming 

convention, we are now dealing with the @peak cells at each resolution. These @peak cells can now be 

used to segment the image and identify key features to use in object recognition.

Image segmentation

Our image segmentation step has two major goals: to break the image into 7 +/- 2 sections, and 

for those partitions to correspond to groupings that a human might suggest. Lesperance achieves these 

goals by using several layers of receptive fields with different sizes. In his scheme, the smaller @peak 

cells detect edges of objects, while the larger fields are maximally active when the object is centered 

and the same size as the receptive field (maximum contrast).  He then groups highly active cells  

together, so that a region consists of all the edges (small receptive fields) that are encompassed by a 

highly active larger receptive field. Lesperance suggests several improvements related to using slightly  

more complicated receptive fields.  His improvements would help to eliminate certain light/dark  

patterns not being detected as an edge, but do not address his system's reliance on extremely large 

receptive fields.

One potential solution to this shortcoming is to use a cell-assembly network for all associative 



post processing on the @peak cells. Ultimately, we want to associate similarly sized highly active 

@peak cells that are close together with each other, and group them with a larger @peak cell. The 

small cells will indicate the region's boundaries, while the larger cells provide a better general  

representation of the area. A cell-assembly network with variously sized, spatially consistent input 

layers is a possible way to achieve this. The network should have a 1-1 mapping of receptive field cells 

to input neurons. It should be arranged so that spatial relationships among the cells are maintained in 

the network. If done right, within-layer lateral inhibition in this network could eliminate the need for  

Lesperance's hill climbing step, @peak cells would arise naturally as the only cells to still be firing 

after lateral competiton. Further associative grouping could be handled by interactions between the 

different input layers, so that activity from an extremely large peak cell could influence lower layers in  

a top-down manner.

Feature Recognition

Feature recognition also has its roots in the @peak receptive fields. Lowe (2004) describes a 

method by which scale and rotation invariant features can be extracted from an image. I'll briefly 

discuss his method, and then describe some modifications I think can be applied to both optimize the 

processing and make the resulting features (“keypoints” in Lowe's terminology) more useful for 

general object recognition with a cell-assembly network.

Interestingly, much of Lowe's architecture is common with Lesperance's image segmentation 

algorithm. Both approaches use a series of Guassian convolutions over an image, and then calculate the 

difference of guassian (DoG).  Lowe adds an additional step to achieve scale invariance. Once the 

DoGs have been calculated for the initial image, the image is down-sampled by a factor of two and the 

DoGs are calculated again. This ensures that some features of an image will be recognized no matter its  

size in the visual field. The next generalization Lowe applies is a rotation. Each @peak cell represents a  

point of high dark/light contrast, and so by finding the gradient at that point we can rotate and thereby 



normalize the pixel. This step will allow our recognition algorithm to identify a key point even if the  

object that contains it has been rotated. This step could definitely be incorporated into Lesperance's  

image segmentation algorithm, since both are dealing with fundamentally similar problems.  

Now that we've identified preliminary keypoints, and abstracted their size and orientation, it's 

time to describe them. Lowe builds a keypoint descriptor by inspecting the gradient of nearby points.  

First, each point is weighted by a Guassian function with a sigma of one half the descriptor window. In 

effect, this makes the magnitude of the gradients in the center more important than the gradients that  

are further out. The space around the keypoint is divided into n*n regions (Lesperance uses 4x4 in his 

experiments, but I think a 2x2 descriptor array will work better for reasons I'll discuss below), and in 

each region the magnitudes of the gradients are used to build a histogram. These histograms are then 

used to build an n-dimensional feature vector. The feature vector's dimensionality is determined by the 

number of histograms, multiplied by the number of bins in each histogram. By scaling this vector to 

unit length, we can achieve invariance over illumination. This works mainly because we are already 

dealing with gradients, and also because a linear change in illumination will cause a similar increase in  

the magnitude of the gradients (so we end up being more concerned with gradient distribution). 

Lesperance's goal was to build keypoints that could then be used in a generalized Hough 

transform. As such, he wanted few false-positives but wasn't that worried about false negatives. 

Identifying even a few keypoints associated with an image would be enough, as the Hough transform 

deals with obstruction extremely well already. This is why his experiments worked the best with a 

massive descriptive vector: 4x4 histograms with 8 bins in each (128 dimensions)! Our cell assemblies 

function similarly to a Hough transform in that they should be able to handle (and even thrive) under 

non-optimal conditions. However, to build a coherent network we will need lots of input. I think that 

we will find much better results with a significantly smaller descriptive vector, 2x2x8 should be more 

than enough information about each point to allow an associative network to function (this is entirely a 

gut feeling...). Instinctively, this makes sense to me because reducing the amount of information in any 



keypoint will further generalize it and we want to provide the lower layers of the network with as much 

general information as possible. Also, if we later decide we need a larger input layer, it would be 

straightforward to incorporate location within the image. Since Lowe uses a Hough transform, his 

algorithm doesn't care where in the image a given key point is located until the post-processing phase 

(to draw a box around the already recognized object).

Plugging our data into a cell-assembly network

At this point, our visual system consists of two separate mechanisms.  Both rely on the DoG to 

identify points of contrast within an image. Our segmentation algorithm will split an image into several  

regions, and our object recognition system can pick out highly localized patterns or so called “key 

points.” In human vision, image segmentation and feature recognition are likely part of the same 

system (the ventral stream). The dorsal system's task is to abstract motion and location, something I'll  

discuss briefly but not focus on. Our goal is to combine the information from the two algorithms to 

produce coherent and yet abstract representations of things in the visual field. This representations will  

necessarily be semantically transparent – they are built up entirely from perception and as such do not 

suffer from the symbol grounding problem.

The first step is to build a cell-assembly network with an input cell for every possible keypoint 

descriptive vector. This will allow an easy 1-1 mapping from observed keypoints to next stage in 

processing. It is important that the cell-assembly be wired hierarchically, but very densely to start. As 

the network ages, connections that haven't been heavily used will be pruned. A dense wiring ensures 

that any subset of keypoints can fire together and trigger a cell in the next level of the hierarchy. 

Pruning the network will help to control it; we don't want a new visual stimulus to be able to trigger an 

explosion of activity.

Another portion of the network will code for an image's location in the visual field, and allow 

for a computational correlate to focus. When a keypoint is found, its location (X/Y) will also activate a 



cell in a neighboring network. This network will also receive top-down input from the segmentation 

algorithm. Each segment will have a high-level node whose activity will indicate how many keypoints  

have been found within the segment. As more relevant keypoints are found, the segment will stimulate 

all pixels within its boundaries (conversely, it will inhibit its pixels when few keypoints have been 

found). This will promote the activation of keypoints that may not have otherwise been judged 

important enough to process. In theory, this feedback loop will allow the system to focus in on a 

specific segment if a few highly relevant (judged by their activation on higher levels of the object cell  

assembly, perhaps?) keypoints are found. So in a blurry image, the system can be more tolerant of input 

in specific portions, while still ignoring the majority of the noise. Also, the activity level of a segment  

will serve as a rough indicator of how much is “going on” in that segment. This will allow us to 

differentiate the foreground and background of an image.

If we're building a system to search for a specific object which we may or may not be seeing, 

then this mechanism could be used to scan the entire visual field. If the object hasn't been found after a 

first pass, we could then inhibit the highly active segments and activate others, bringing out more 

keypoints in them (hopefully enough to allow our network to recognize the image). 

Conclusions

I thought it was extremely interesting that both Lesperance and Lowe used the difference of 

guassian function as the basis for very different tasks in machine vision. I think that a cleverly wired 

series of associative networks could likely be trained to perform more accurately and faster than Lowe's 

database and Hough transform or Lesperance's complicated post processing. In my view, the most 

difficult part of the project will be figuring out how to keep the network stable after an initial period of  

training. Neural networks are well known to suffer from catastrophic forgetting, but human brains do 

not. I think that we may be able to prevent this by pruning the network after training, but the pruning 



may stunt the system's flexibility. 

Additionally, it may be possible to perform the majority of the computation before the two 

systems split. The DoG and lateral inhibition (@peak cell determination) steps could be run in a highly 

optimized hardware loop which dumps its output into a common cell-assembly input layer. Both 

systems could then begin processing on this layer, and modulate it as top-down conditions dictate.
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